

Preparation of 1,2- and 1,4-Diols via Selective Cleavage of C-Benzotriazole Bonds in Reductive Lithiations of N-(α -Alkoxy-benzyl- and -allyl-)benzotriazoles

Alan R. Katritzky,** Weiliang Bao*, Ming Qi*, Clara N. Fali* and Indra Prakashb

^a Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA and
^b Monsato, Nutrition and Consumer Sector., 601 East Kensington Rd, Mt. Prospect, IL 60056-1300, USA

Received 13 May 1998; accepted 29 June 1998

Abstract: Selective cleavage of C-benzotriazole bonds in the presence of C-O bonds is reported for the reductive lithiation of N-(α -alkoxybenzyl)benzotriazoles and N-(α -alkoxyallyl)benzotriazoles in a one-step or two-step process. Trapping of the intermediates with carbonyl compounds gave unsymmetrically protected 1,2 or 1,4-diols in moderate yields. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords: diols; carbanions; lithium compounds.

Transforming a C-X (X = heteroatom) bond into the corresponding carbanion is important for the preparation of functionalized organometallic reagents (Eq. 1). Anny different heteroatoms (e.g. halides, S, P and O) have been utilized in these conversions; in particular, many kinds of C-O bond could be transformed into the corresponding carbanions. However, similar transformations from C-N bonds into the carbanions have been more difficult; before our work the few known examples were restricted to the small heterocycles aziridines and azetidines. We recently demonstrated that in contrast to simple amino derivatives, allyl-, henzyl-sa, and α -aminoalkyl-benzotriazoles with benzotriazolyl (Bt) as a leaving group could be converted into the corresponding carbanions via a C-benzotriazole bond (C-N) scission. We have now found that such C-benzotriazole bonds can be cleaved selectively in the presence of a geminal C-O bond.

$$C-X$$
 \longrightarrow $C^{-} + X^{-}$ Eq. 1
 $X = Br, Cl, S, P, O, N, Bt$

When N-(α -ethoxybenzyl)benzotriazole (1a)⁸ was treated with lithium/lithium bromide in the presence of cyclopentanone in THF at -78 °C for 2 h, unsymmetrically protected diol 4au was isolated in 66% yield (Scheme 1, Table 1).⁹ Interestingly, aromatic aldehydes, which usually show severe pinacol coupling problems under such Barbier-type conditions, can be used successfully as electrophiles in this new reaction to produce

vicinal diols 4av, aw in 54-57% yields, accompanied with about 10-15% pinacol coupling by-products. Treatment of N-(α -ethoxy-p-methylbenzyl)benzotriazole $(1b)^8$ with Li/LiBr and benzaldehyde gave 4bv in 48% yield. Compounds 4av, aw, bv were each formed as a diastereomeric mixture in about a 1:1 ratio. All of these results showed that good selectivity for the cleavage of C-Bt bonds in the pesence of C-O bonds could be obtained via carbanion 3^{10} under appropriate conditions.

Ar
$$\rightarrow$$
 Ph \rightarrow P

Scheme 1

In a similar manner, the C-Bt bond in N-(α -ethoxyallyl)benzotriazoles (5a-c)⁸ could be cleaved selectively under the same Barbier-type conditions (Scheme 2). The reactions of N-(α -ethoxyallyl)benzotriazole (5a) and ketones or aliphatic aldehydes displayed mainly α -attack to form vicinal diols 6au,ax,ay in 50-67% yields; γ -attack product could be detected in the crude reaction mixture by ¹H NMR and 25% of compound 7au was isolated alongside 50% of 6au. The selectivities for α/γ attack were between 2 and 4:1. By contrast, aromatic aldehydes 2v and 2w as electrophiles gave predominantly the γ -attack products 7av (61%, cis only) and 7aw (45%, cis:trans = 4:1).

Table 1. The Preparation of Unsymmetrically Protected Diols 4, 6 and 7

Substrates							Products			
No.	Ar/R	R ⁱ	R ²	4 or 6	yield (%) ratio ^a	7	yield (%) cis:trans	6:7 ^b
1 a/2u Ph		-(CH ₂) ₄ -		4au	66	-				
l a/2v	Ph	Ph	Н	4av	54	1:1				
la/2w	Ph	<i>p</i> -Tol	Н	4aw	57	1:1				
1b/2v	<i>p</i> -Tol	Ph	Н	4bv	48	1:1				
5a/2u	Н	-(CH ₂) ₄ -		6au	50	-	7au	25	11:1	2:1
5a/2x	Н	Et	Et	6ax	61	-	_c			4:1
5a/2y	Н	Pr	Н	6 a y	67	1:1	- ^c			4:1
5a/2v	Н	Ph	Н	_ <i>d</i>			7av	62	> 98:2	- ^d
5a/2w	Н	p-Tol	Н	_ <i>d</i>			7aw	45	4:1	_ d
5b/2u	Pr	-(CH ₂) ₄ -	6bu	42	_e	7bu	20	10:1	2:1
5b/2v	Pr	Ph	Н	_ ^d			7bv	56	10:1 ^f	_ <i>d</i>
Sc/2u	Ph	-(CH ₂) ₄ -		_ ^d			7cu		1:2	_ d
5c/2v	Ph	Ph	Н	_ <i>d</i>			7ev	65 ^g	1:2	_ <i>d</i>
5c/2w	Ph	p-Tol	Н	_ ^d			7cw	58	1:2 ^f	- ^d
5c/2x	Ph	Et	Et	- ^d			7ex	60	1:2	_ d

"Diastereoisomer ratio. "Regioselectivity of α/γ attack by "H NMR of the crude products. "Compounds 7 were detected by NMR but not isolated. "Compounds 7 predominant from NMR of the crude products, and no corresponding compounds 6 were isolated. "Trans only. Diastereoisomers in a ratio of 1:1 were formed. "The yield was 58% when the reaction was carried out in the two-step procedure."

 γ -Propyl substituted allylbenzotriazole **5b** affords both α - and γ -attack products **6bu** (42 %, trans only) and **7bu** (20 %, cis:trans = 10:1, Table 1) when a ketone was the electrophile. When an aromatic aldehyde was the electrophile, only γ -attack product **7bv** (cis:trans = 10:1) was detected. However γ -attack 1,4-diols **7cu,cv,cw,cx**, (trans:cis \cong 2:1, about 1:1 diastereomers) were obtained from the reaction of γ -phenyl substituted allylbenzotriazole **5c** with both aliphatic or aromatic carbonyl electrophiles (Scheme 2, Table 1).

The above reactions can also be carried out as a two-step process. Thus, N-(α -ethoxy- γ -phenylallyl)benzotriazole (5c) was treated with Li/LiBr in THF at -78 °C for 2 h to form the allylmetal

intermediate 8,¹⁰ which was then trapped by D₂O or benzaldehyde to give γ-attack products 9 and 7cv in 70% and 58% yields, respectively (Scheme 2).

In summary, we developed a reductive lithiation of N-(α -ethoxy-benzyl- or -allyl-)benzotriazoles and demonstrated selective C-benzotriazole (C-N type) bond scission to provide a potentially useful alternative route for the preparation of α -alkoxy carbanions.² However, the α : γ and cis:trans selectivities are strongly dependant on the substrates used and require further investigation.

REFERENCES AND NOTES

- (a) Najera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155-181.
 (b) Yus, M. Chem. Soc. Rev. 1996, 25, 155-161.
- 2. Maercker, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 972-989.
- 3. (a) Almena, J.; Foubelo, F., Yus, M. J. Org. Chem. 1994, 59, 3210-3215. (b) Almena, J.; Foubelo, F., Yus, M. Tetrahedron 1994, 50, 5775-5782.
- 4. Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem. Rev., 1998, 98, 409-548.
- 5. (a) Katritzky, A. R.; Qi, M. J. Org. Chem. 1997, 62, 4116-4120. (b) Katritzky, A. R.; Fali, C. N.; Qi, M. Tetrahedron Lett. 1998, 39, 363-366.
- 6. Katritzky, A. R.; Fali, C. N.; Qi, M. Tetrahedron Lett. 1998, 39, 2289-2292.
- 7. Katritzky, A. R.; Qi, M.; Feng, D.; Nichols, D. A. J. Org. Chem. 1997, 62, 4121-4124.
- 8. (a) Katritzky, A. R.; Lang, H.; Wang, Z.; Zhang, Z.; Song, H. J. Org. Chem. 1995, 60, 7619-7624. (b) Katritzky, A. R.; Zhang, G.; Jiang, J. J. Org. Chem. 1995, 60, 7589-7596.
- 9. Representative Experimental Procedures for the Reactions of Compounds 1 or 5 with Carbonyl Compounds: Lithium (0.57 g, 25 mmol, 30% dispersion in mineral oil) was washed twice with THF under argon. THF (10 mL) was added and the lithium suspension was treated with 1,2-dibromoethane (2 mmol) and then cooled to -78 °C. A solution of N-(α-ethoxybenzyl)benzotriazole (1a, 5 mmol) and cyclopentanone (10 mmol) in THF (20 mL) was added dropwise into the lithium over 1 h (typically, a dark-green color will develop during this time) and kept another 2-4 h before being quenched with water (15 mL) at the same temperature. After ether extraction, the crude product was purified by flash column chromatography on silica gel (eluent: EtOAc/hexanes = 1/10) to give 4au in 66% yield. All of the 1,2- and 1,4-diols prepared gave satisfactory ¹H and ¹³C NMR spectra, and novel products gave satisfactory microanalyses or HRMS.
- 10. The generation of α-alkoxy carbanions of type RO-C has been recently surveyed, see Guijarro, A.; Yus, M. Tetrahedron Lett. 1996, 37, 5593-5596.